

IN ACTION

Lukas Ruebbelke
FOREWORD BY Martin Gontovnikas

SAMPLE CHAPTER

M A N N I N G

AngularJS in Action

by Lukas Ruebbelke
with Brian Ford

Chapter 6

Copyright 2015 Manning Publications

brief contents

PART 1 GET ACQUAINTED WITH ANGULARJS1

1 ■ Hello AngularJS 3

2 ■ Structuring your AngularJS application 20

PART 2 MAKE SOMETHING WITH ANGULARJS33

3 ■ Views and controllers 35

4 ■ Models and services 57

5 ■ Directives 80

6 ■ Animations 115

7 ■ Structuring your site with routes 130

8 ■ Forms and validations 142

APPENIDXES ..153

 A ■ Setting up Karma 153

B ■ Setting up a Node.js server 158

C ■ Setting up a Firebase server 160

D ■ Running the app 162

vii

Animations

This chapter covers
■	 How AngularJS handles animations
■	 Understanding the animation-naming convention
■	 The three types of animations
■	 Concrete examples of each type as it relates to

Angello

6.1 Intro to animations
AngularJS was originally created as a framework to handle enterprise CRUD applica­
tions. With the introduction of the new animations API, AngularJS has broadened
the possibilities to offer something for designers and developers alike.

 The most powerful aspect of AngularJS is directives, and AngularJS animations
are essentially class-based directives that have the power to harness complex anima­
tions with the addition of a single class to your markup.

 The goal of this chapter is to show you the AngularJS animation events, the
naming convention around those events, and the three types of animations you can
do in AngularJS, with practical examples for each. We’re not going to examine CSS3
animations or JavaScript animations in depth, but rather endeavor to lay a strong
foundation that you can let your creativity run wild on.

115

116 CHAPTER 6 Animations

6.1.1 How AngularJS handles animations

AngularJS animations can be distilled down to five events and a class-based naming
convention. Once you’ve grasped the events at play and the naming convention,
AngularJS animations fade into the background and the animations themselves take
center stage.

 There are three types of animations that you can create with AngularJS: CSS transi­
tions, CSS animations, and JavaScript animations. Each type of animation is well suited
for varying contexts, and we’ll explore each of them later in the chapter.

 AngularJS doesn’t actually do any of the animations themselves, but simply pro­
vides the hooks for you to apply your own animations as you see fit. These hooks come
in the form of events, and there are only five of them.

The five animation events are enter, leave, move, addClass, and removeClass (see
table 6.1).

Table 6.1 The AngularJS animation furious five

Event Function Description

enter

leave

move

addClass

removeClass

$animate.enter(element,
parent, after, callback);

$animate.leave(element,
callback);

$animate.move(element,
parent, after, callback);

$animate.addClass(element,
className, callback);

$animate.removeClass(element,
className, callback);

Appends the element object after the
after node or within the parent node
and then runs the enter animation
on the element

Runs the leave animation and then
removes the element from the DOM

Moves the element node either after
the after node or inside of the v
node and then runs the move anima­
tion on the element

Runs the addClass animation based
on the className value and then
adds the class to the element

Runs the removeClass animation
based on the className value and
then removes the class from the element

The enter and leave events are fired when a DOM element is added or removed from
the DOM tree, respectively. The move event is fired when a DOM element changes posi­
tion within the DOM tree. Last but not least, the addClass and removeClass events are
fired when a class is added to or removed from an element, respectively.

6.1.2 The animation-naming convention

AngularJS animations are entirely class-based, which is a design decision that makes
integration with third-party libraries easier. Even JavaScript animations follow a class-
based naming convention for consistency.

117 Intro to animations

The animation-naming convention follows a [class]­
[event]-[state] pattern, as shown in figure 6.1. This

figure indicates that we’re dealing with a mute class

that’s being added and removed, as seen by .mute­
add and .mute-remove. The animation defaults to

the starting state and then progresses to the active

state, as in “the class has been actively applied.” The

starting state is .mute-add, and .mute-add-active is

the active or completed state.

If your animations are defined within CSS and
the events are triggered by an AngularJS directive such as ng-if or ng-repeat, then
the class name will be prefixed with an ng, as in ng-enter and ng-leave.

6.1.3 Animations enable!

The most logical place to start from a pragmatic sense is with how you enable anima­
tions within your AngularJS application. AngularJS animations aren’t part of the Angu­
larJS core, and so you have to include that as a separate file. We’ll use GreenSock
Animation Platform (GSAP), which is a JavaScript animation framework. We want the
TweenMax library, which contains everything GreenSock has to offer.

// client/assets/js/boot.js

{ file:

'//cdnjs.cloudflare.com/ajax/libs/

 ➥ angular.js/1.3.3/angular-animate.min.js'

},

{ file:

'//cdnjs.cloudflare.com/ajax/libs/gsap/latest/TweenMax.min.js'

},

GREENSOCK You can read more about GreenSock at http://www.greensock
.com/gsap-js/.

Now that angular-animate.min.js has been included, we need to inject it as a sub-module
into our application:

// client/src/angello/Angello.js

var myModule = angular.module('Angello', [

//...

'ngAnimate',

//...

]);

With those two steps completed, we’re ready to start adding animations to our
application.

Figure 6.1 The animation-naming
convention applied to directives

http://www.greensock.com/gsap-js/
http://www.greensock.com/gsap-js/
http:client/src/angello/Angello.js
http:angular-animate.min.js
http:angular.js/1.3.3/angular-animate.min.js
http:client/assets/js/boot.js

118 CHAPTER 6 Animations

6.2 CSS transitions
The easiest animations to implement are CSS transitions. The ease of implementation
comes from the fact that they’re entirely CSS-based and much more concise to express
than CSS animations.

 We’ll create a my-fade animation and apply it to a div that will trigger the anima­
tion when the div is added or removed from the DOM via ng-if. This animation will
toggle the visibility of the story details in the right column when the Angello applica­
tion is running in storyboard mode (see table 6.2).

Table 6.2 The animation-naming convention

Event Starting CSS class Ending CSS class Directives that fire it

enter

leave

move

.ng-enter

.ng-leave

.ng-move

.ng-enter-active

.ng-leave-active

.ng-move-active

ngRepeat, ngInclude, ngIf, ngView

ngRepeat, ngInclude, ngIf, ngView

ngRepeat

6.2.1 Define the base transition

The first thing you need to do when constructing a CSS transition within AngularJS is
set up the base transition. Because we’re using ng-if to trigger the animation and the
event is caused by an AngularJS directive, we need to define the classes for ng-enter
and ng-leave:

/* client/assets/css/animations.css */

.my-fade-animation.ng-enter, .my-fade-animation.ng-leave {

-webkit-transition: 0.5s linear all;

-moz-transition: 0.5s linear all;

-o-transition: 0.5s linear all;

transition: 0.5s linear all;

}

In this code we define the transition for ng-enter and ng-leave on the my-fade ani­
mation to use linear easing that lasts for 0.5 seconds and applies to all properties.

6.2.2 Define the ng-enter transitions

The next step is to define the starting and stopping states for ng-enter. We’ll start
with an opacity of 0 and finish with an opacity of 1. This means that when the element
is added, it’ll start completely transparent and then fade in to full opacity.

/* client/assets/css/animations.css */

.my-fade-animation.ng-enter {

opacity: 0;

}

.my-fade-animation.ng-enter.ng-enter-active {

opacity: 1;

}

CSS transitions 119

6.2.3 Define the ng-leave transitions

We’ll now define the transition for ng-leave, which is usually the reverse of what you
did for ng-enter. We’ll start with an opacity of 1 and end with an opacity of 0:

.my-fade-animation.ng-leave {

opacity: 1;

}

.my-fade-animation.ng-leave.ng-leave-active {

opacity: 0;

}

For the sake of illustration, we’ve separated the ng-enter and ng-leave classes, but
you could easily combine them for conciseness:

.my-fade-animation.ng-enter,

.my-fade-animation.ng-leave.ng-leave-active {

opacity: 0;

}

.my-fade-animation.ng-leave,

.my-fade-animation.ng-enter.ng-enter-active {

opacity: 1;

}

6.2.4 Making it move

Now that the CSS classes have been defined, it’s a matter of attaching them to the
DOM for use. Now you’ll see what we mean when we say AngularJS transitions are
essentially class-based directives that encapsulate animation functionality.

 This is the HTML without the animation:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->

<div class="details">

<!-- ... -->

<div ng-if="storyboard.detailsVisible">

<!-- ... -->

</div>

</div>

This is the HTML with the animation:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->

<div class="details">

<!-- ... -->

<div ng-if="storyboard.detailsVisible" class="my-fade-animation">

<!-- ... -->

</div>

</div>

120 CHAPTER 6 Animations

And so the only part left in this section is to actually toggle ng-if:

// client/src/angello/storyboard/controllers/StoryboardController.js

angular.module('Angello.Storyboard')

.controller('StoryboardCtrl',

function ($scope, $log, StoriesModel, UsersModel,

STORY_STATUSES, STORY_TYPES) {

//...

storyboard.detailsVisible = true;

//...

storyboard.setDetailsVisible = function (visible) {

storyboard.detailsVisible = visible;

};

});

In the StoryboardCtrl, we create a property on our $scope reference, called
detailsVisible, that we’ll use to bind ng-if to. We also create a method called set-
DetailsVisible that we use to set detailsVisible to true or false based on the value
of the visible parameter.

 In the HTML, we bind to detailsVisible via ng-if="storyboard.detailsVisible":

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->

<div class="details">

<div class="details-nav">

<div ng-if="!storyboard.detailsVisible">

<button class="btn pull-left btn-default"

ng-click="storyboard.setDetailsVisible(true)">

</button>

</div>

<div ng-if="storyboard.detailsVisible">

<button class="btn pull-right btn-default"

ng-click="storyboard.setDetailsVisible(false)">

</button>

</div>

</div>

<div ng-if="storyboard.detailsVisible"

class="my-fade-animation">

<!-- ... -->

</div>

</div>

Note that we also have two other divs that are being toggled based on the property of
detailsVisible. If detailsVisible is true, then the button to set detailsVisible to
false is shown, and vice versa.

 We’ve now completed the functionality for attaching a CSS transition to our appli­
cation. In the next section we’ll cover another animation, but this time we’ll do it with
a CSS animation.

http:client/src/angello/storyboard/controllers/StoryboardController.js

121 CSS animations

6.3 CSS animations
Now that you’ve seen AngularJS animations using CSS transitions, let’s build on that
with another animation using CSS animations. CSS animations tend to be more ver­
bose than CSS transitions, but they’re also significantly more powerful.

 For this example, we’ll do another fade animation, but this time with ng-repeat. If
you recall, in table 6.2 ng-repeat has three events that we need to style for. These
three events are ng-enter, ng-leave, and ng-move.

6.3.1 Define the base animation classes

The first thing we need to do is to define the base animation classes:

/* client/assets/css/animations.css */

.my-repeat-animation.ng-enter {

-webkit-animation: 0.5s repeat-animation-enter;

-moz-animation: 0.5s repeat-animation-enter;

-o-animation: 0.5s repeat-animation-enter;

animation: 0.5s repeat-animation-enter;

}

.my-repeat-animation.ng-leave {

-webkit-animation: 0.5s repeat-animation-leave;

-moz-animation: 0.5s repeat-animation-leave;

-o-animation: 0.5s repeat-animation-leave;

animation: 0.5s repeat-animation-leave;

}

.my-repeat-animation.ng-move {

-webkit-animation: 0.5s repeat-animation-move;

-moz-animation: 0.5s repeat-animation-move;

-o-animation: 0.5s repeat-animation-move;

animation: 0.5s repeat-animation-move;

}

We define our base CSS class as my-repeat-animation and then define animations
for ng-enter, ng-leave, and ng-move. We then define the animation property with
a 0.5-second duration and the appropriate keyframe for the animation.

VENDOR PREFIXES The reason why CSS animations are so verbose is because
you have to define the animation for every vendor prefix. Using a CSS prepro­
cessor such as Sass or Less eliminates the need to type all of this out by hand.

6.3.2 Define the animation keyframes

Now that the base animation classes are defined, it’s just a matter of defining the key-
frames with the from and to states defined. Also, with CSS animations, it’s not neces­
sary to use the active convention that CSS transitions use.

 The following is a fairly lengthy piece of code, but the pattern is easy to identify.
The ng-enter animations go from 0 opacity to an opacity of 1, while ng-leave does
the exact opposite, and ng-move goes from an opacity of 0.5 to an opacity of 1:

122 CHAPTER 6 Animations

/* client/assets/css/animations.css */

@keyframes repeat-animation-enter {

from {

opacity:0;

}

to {

opacity:1;

}

}

@-webkit-keyframes repeat-animation-enter {

from {

opacity:0;

}

to {

opacity:1;

}

}

@-moz-keyframes repeat-animation-enter {

from {

opacity:0;

}

to {

opacity:1;

}

}

@-o-keyframes repeat-animation-enter {

from {

opacity:0;

}

to {

opacity:1;

}

}

@keyframes repeat-animation-leave {

from {

opacity:1;

}

to {

opacity:0;

}

}

@-webkit-keyframes repeat-animation-leave {

from {

opacity:1;

}

to {

opacity:0;

}

}

123 CSS animations

@-moz-keyframes repeat-animation-leave {

from {

opacity:1;

}

to {

opacity:0;

}

}

@-o-keyframes repeat-animation-leave {

from {

opacity:1;

}

to {

opacity:0;

}

}

@keyframes repeat-animation-move {

from {

opacity:0.5;

}

to {

opacity:1;

}

}

@-webkit-keyframes repeat-animation-move {

from {

opacity:0.5;

}

to {

opacity:1;

}

}

@-moz-keyframes repeat-animation-move {

from {

opacity:0.5;

}

to {

opacity:1;

}

}

@-o-keyframes repeat-animation-move {

from {

opacity:0.5;

}

to {

opacity:1;

}

}

124 CHAPTER 6 Animations

6.3.3 Make it move

To show the portability of AngularJS animations, we can actually attach the same ani­
mation to two different ng-repeat instances with little fanfare:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->

<div class="list-area-animation"

ng-class="{'list-area-expanded':!storyboard.detailsVisible}">

<div class="list-wrapper">

<ul class="list my-repeat-animation"

ng-repeat="status in storyboard.statuses">

<h3 class="status">{{status.name}}</h3>

<hr/>

<li userstory

ng-repeat="story in storyboard.stories

➥ | filter:{status:status.name}"
drag-container="story"

➥ mime-type="application/x-angello-status"
drop-container=""

➥ accepts="['application/x-angello-status']"
class="story my-repeat-animation"
ng-click="storyboard.setCurrentStory(story)">

<!-- ... -->

</div>

</div>

We attach it to the ul items, which render the status columns that the user stories are
organized into, and to the li items that represent the user stories themselves.

 We asserted at the beginning of the chapter that AngularJS animations are just a
matter of a handful of events and a naming convention. We believe that this section
really proved it in the sense that we haven’t introduced any new concepts other than
the CSS animation syntax itself. It was to a point anticlimactic, because by now some of
these elements should start to feel familiar.

6.4 JavaScript animations
The final type in the AngularJS animations triad is JavaScript animations. For this exam­
ple we’ll toggle the position of the details section by animating it on and off the screen.
We’ll accomplish this by dynamically attaching a details-visible class using ng-class.

 You can see the details section shown in figure 6.2, and in figure 6.3 it’s in its hid­
den state.

 You can use any JavaScript animation library, but for our example we’ll use Tween-
Max, which is a part of the GreenSock Animation Platform. TweenMax is an incredi­
bly powerful and feature-rich animation library that performs well on desktop and
mobile browsers.

125 JavaScript animations

Figure 6.2 Details shown

Figure 6.3 Details hidden

6.4.1 Defining the JavaScript animation

JavaScript animations are defined using the animation service:

// client/src/angello/app/animations/DetailsAnimation.js

angular.module('Angello.Common')

.animation('.details-animation',

function () {

//...

});

Defining the animation is similar to defining an AngularJS service or controller.
The only difference is that the animation name is class-based, so instead of details-
animation, it’s .details-animation.

http:client/src/angello/app/animations/DetailsAnimation.js

126 CHAPTER 6 Animations

6.4.2 The JavaScript animation events

Now that the animation has been defined, we need to actually configure it to handle
the animation events. Because we trigger the animation with ng-class, the two events
we want to listen to are addClass and removeClass:

// client/src/angello/app/animations/DetailsAnimation.js

angular.module('Angello.Common')

.animation('.details-animation',

function () {

return {

addClass: function (element, className, done) {

//...

},

removeClass: function (element, className, done) {

//...

}

};

});

The event handlers are defined inline to the return object. The three parameters that
each handler receives are element, className, and done. The element is the DOM ele­
ment that the event was triggered on, className is the name of the class that trig­
gered the event, and done is the callback function that needs to be called when the
animation is complete.

6.4.3 The JavaScript animation class

It’s possible to have more than one animation defined on an element, and so it’s nec­
essary to perform some logic to only act if the class that triggered the event is the one
you’ve defined:

// client/src/angello/app/animations/DetailsAnimation.js

angular.module('Angello.Common')

.animation('.details-animation',

function () {

return {

addClass: function (element, className, done) {

if (className == 'details-visible') {

//...

}

else {

done();

}

},

removeClass: function (element, className, done) {

if (className == 'details-visible') {

//...

}

else {

done();

}

}

};

});

http:client/src/angello/app/animations/DetailsAnimation.js
http:client/src/angello/app/animations/DetailsAnimation.js

JavaScript animations 127

This is why, in the preceding code, we check to see if className is equal to details-
visible, and if it’s not then we call the done callback.

6.4.4 TweenMax

Now that we know that we’re dealing with the details-visible class specifically, it’s
time to add in the TweenMax code to actually do the animation work:

// client/src/angello/app/animations/DetailsAnimation.js

angular.module('Angello.Common')

.animation('.details-animation',

function () {

return {

addClass: function (element, className, done) {

if (className == 'details-visible') {

TweenMax.to(element, 0.5,

➥ {right: 0, onComplete: done });
} else {

done();
}

},

removeClass: function (element, className, done) {

if (className == 'details-visible') {

TweenMax.to(element, 0.5, {

right: -element.width() + 50,

onComplete: done

});

} else {

done();

}

}

};

});

When details-visible is added, we use TweenMax to animate the element to an
absolute position of 0 pixels to the right. When details-visible is removed, we use
TweenMax to animate it off the screen by setting the right property to the negative
value of element.width() plus 50 pixels so the Show button is still visible.

6.4.5 Making it move

The final piece to make the details-animation work is to add it to the DOM and set
ng-class to toggle the details-visible class.

 The following is the same code we used earlier, but with a few small additions to
the outer div. We’ve added details-animation to the class attribute, so now the
animation has a hook into the DOM. And we’re also dynamically adding or remov­
ing the details-visible class based on the value of detailsVisible with
ng-class="{'details-visible':storyboard.detailsVisible}":

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->

<div class="details details-animation"

ng-class="{'details-visible':storyboard.detailsVisible}">

http:client/src/angello/app/animations/DetailsAnimation.js

128 CHAPTER 6 Animations

<div class="details-nav">

<div ng-if="!storyboard.detailsVisible">

<button class="btn pull-left btn-default"

ng-click="storyboard.setDetailsVisible(true)">

</button>

</div>

<div ng-if="storyboard.detailsVisible">

<button class="btn pull-right btn-default"

ng-click="storyboard.setDetailsVisible(false)">

</button>

</div>

</div>

<div ng-if="storyboard.detailsVisible" class="my-fade-animation">

<!-- ... -->

</div>

</div>

The resulting animation works in conjunction with the CSS transition animation we
defined so that the details elements fade out as the details section slides off the screen,
and fade in as the details section slides back in.

MANUALLY TRIGGERED ANIMATIONS You can manually trigger your own anima­
tions using the $animate service. See http://docs.angularjs.org/api/ngAnimate
.$animate for more details.

6.5 Testing
Because animations target the visual aspect of our application more than the func­
tionality aspect, we usually leave animations out of our unit tests. But if you’d like to
know how to test animations, visit http://www.yearofmoo.com/2013/08/remastered­
animation-in-angularjs-1-2.html#testing-animations.

Full-page animations
Here’s a super easy way to get full-page transitions: set an animation class on the
tag with the ng-view directive defined on it. In the context of Angello, if you were to
find the <div ng-view=""></div> element in index.html and add class="my­
fade-animation", each route would automatically start fading in and out!

6.6 Best practices
Memorize the naming conventions for AngularJS animations. Seriously, you’ll be an anima­
tion alchemist. You’ll be able to throw together pro animations in no time at all.

Use CSS transitions/animations when possible. We like to use CSS transitions and ani­
mations for simpler visuals, and only build them using JavaScript when they involve
multiple animations and/or complex transitions. That way, we can keep our styles in
our CSS files and let the JavaScript focus on the business logic.

http://docs.angularjs.org/api/ngAnimate.$animate
http://docs.angularjs.org/api/ngAnimate.$animate
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#testing-animations
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#testing-animations

Summary	 129

6.7 Summary
Now that you have three examples under your belt, we hope that it’s easy to identify
the event and naming-convention patterns that surround AngularJS animations.
AngularJS has proven itself time and time again to be a great framework for doing
functional things, but animations bring some fashion to that functionality with an
easy-to-use API that leverages all CSS and JavaScript to do any kind of animation you
can imagine. Let’s do a quick recap:

■	 There are five animation event hooks in AngularJS: enter, leave, move,
addClass, and removeClass.

■	 You learned what triggers each type of event.
■	 You discovered the naming conventions that make animations tick.
■	 You viewed examples of CSS transitions, CSS animations, and animations using

JavaScript.
■	 You got a quick introduction to TweenMax and how it interacts with AngularJS.

WEB DEVELOPMENT/JAVASCRIPT

AngularJS IN ACTION

Lukas Ruebbelke

A
ngularJS is a JavaScript-based framework that extends
HTML, so you can create dynamic, interactive web
applications in the same way you create standard static

pages. Out of the box, Angular provides most of the function­
ality you’ll need for basic apps, but you won’t want to stop
there. Intuitive, easy to customize, and test-friendly, Angular
practically begs you to build more interesting apps.

AngularJS in Action teaches you everything you need to get
started with AngularJS. As you read, you’ll learn to build
interactive single-page web interfaces, apply emerging patterns
like MVVM, and tackle key tasks like communicating with
back-end servers. All examples are supported by clear explana­
tions and illustrations along with fully annotated code listings.

What’s Inside
● Get started with AngularJS
● Write your own components
● Best practices for application architecture
● Progressively build a full-featured application
● Covers AngularJS 1.3
●	 Sample application updated to the latest version

of Angular

This book assumes you know at least some JavaScript.
No prior exposure to AngularJS is required.

Lukas Ruebbelke is a full-time web developer and an active
contributor to the AngularJS community.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/AngularJSinAction

SEE INSERT

“Learn how to build an

exciting application from top

to bottom with AngularJS.”
 —From the Foreword by

Martin Gontovnikas

 Developer Advocate, Auth0

“The coolest way to create

a web application

 I have ever seen!”
 —William E. Wheeler

ProData Computer Services

“The best introduction

to AngularJS so far.”
 —Gregor Zurowski, Sotheby’s

“Packed with practical

examples and best practices.”
 —Ahmed Khattab

Cisco Services

M A N N I N G $44.99 / Can $51.99 [INCLUDING eBOOK]

